- Journal Publication – mark by [1]
- Conferences with proceedings – mark by [2]
- Lectures at Scholarly Conferences – link
2023
- Control flow in active inference systems Part II: Tensor networks as general models of control flow
Chris Fields, Filippo Fabrocini, Karl Friston, James F Glazebrook, Hananel Hazan, Michael Levin, Antonino Marcianò
IEEE Transactions on Molecular, Biological and Multi-Scale Communications: 2023 May
[Part I, Part II][1]
2022
- Hananel Hazan, Michael Levin
Exploring The Behavior of Bioelectric Circuits using Evolution Heuristic Search.
Bioelectricity. Volume: 4 Issue 4: December 15, 2022.
[Bioelectricity, bioRxiv][1]
- Aidan Kierans, Hananel Hazan, Shiri Dori-Hacohen.
Quantifying Misalignment Between Agents
[NeurIPS][2]
- Alex Henderson, Chris Yakopcic, Cory Merkel, Steven Harbour, Tarek M. Taha, Hananel Hazan.
Circuit Optimization Techniques for Efficient Ex-Situ Training of Robust Memristor Based Liquid State Machine.
INANOARCH ’22: Proceedings of the 17th ACM International Symposium on Nanoscale Architectures December 2022 Article No.: 10 Pages 1–6 [link] [3]
- Daniel Haşegan, Matt Deible, Christopher Earl, David D’Onofrio, Hananel Hazan, Haroon Anwar and Samuel A. Neymotin
Training spiking neuronal networks to perform motor control using reinforcement and evolutionary learning,
Front. Comput. Neurosci., 30 September 2022
[link][1]
- Haroon Anwar, Simon Caby, Salvador Dura-Bernal, David D’Onofrio, Daniel Hasegan, Matt Deible, Sara Grunblatt, George L Chadderdon, Cliff C Kerr, Peter Lakatos, William W Lytton, Hananel Hazan, Samuel A Neymotin.
Training a spiking neuronal network model of visual-motor cortex to play a virtual racket-ball game using reinforcement learning.
Plos One, [link, bioRxiv][1]
- Hananel Hazan, Simon Caby, Cristopher Earl, Hava Siegelmann, Michael Levin.
Memory via Temporal Delays in Weightless Spiking Neural Network.
In press, [arXiv]
2021
- Daniel Haşegan, Matt Deible, Christopher Earl, David D’Onofrio, Hananel Hazan, Haroon Anwar, Samuel A Neymotin.
Multi-timescale biological learning algorithms train spiking neuronal network motor control.
[bioRxiv][1]
2020
2019
- Sneha Aenugu, Abhishek Sharma, Sasikiran Yelamarthy, Hananel Hazan, Philip.S.Thomas, Robert Kozma
Reinforcement learning with a network of spiking agents
Poster NIPS 2019
[link][2]
- Daniel J. Saunders, Devdhar Patel, Hananel Hazan, Hava Siegelmann, Robert Kozma.
Locally Connected Spiking Neural Networks for Unsupervised Feature Learning
Neural Networks, Volume 119, November 2019, Pages 332-340
[link, DOI, Arxiv-Link] [1]
- Devdhar Patel, Hananel Hazan, Daniel J. Saunders, Hava Siegelmann, Robert Kozma.
Improved robustness of reinforcement learning policies upon conversion to spiking neuronal network platforms applied to ATARI games.
Neural Networks, 25 August 2019
[Link, DOI, Arxiv-Link] [1]
2018
- Hananel Hazan, Daniel J. Saunders, Hassaan Khan, Darpan T. Sanghavi, Hava T. Siegelmann, Robert Kozma.
BindsNET: A machine learning-oriented spiking neural networks library in Python.
Frontiers in Neuroinformatics, 12 December 2018
[Link, Arxiv-Link, git] [1]
- Hananel Hazan, Daniel Saunders, T, Darpan Sanghavi, Hava Siegelmann and Kozma Robert.
Unsupervised Learning with Self-Organizing Spiking Neural Networks.
Conference on Neural Networks (IJCNN), 2018, Rio de Janeiro, 2018, pp. 1-6. Nominated for best paper.
[Link, Arxiv-Link] [2]
2017
- Hananel Hazan and Noam E. Ziv:
Closed Loop Experiment Manager (CLEM)—An Open and Inexpensive Solution for Multichannel Electrophysiological Recordings and Closed Loop Experiments
Frontiers in Neuroscience, 18 October 2017.
[Link, PDF, git] [1]
2016
- T Bitan, A Frid, H Hazan, LM Manevitz, H Shalelashvili, Y Weiss.
Classification from generation: Recognizing deep grammatical information during reading from rapid event-related fMRI.
Conference on Neural Networks (IJCNN), 2016. International Joint Conference on, 4637-4642.
[Link, PDF] [2]
- A Frid, H Hazan, E Koilis, LM Manevitz, M Merhav, G Star.
The Existence of Two Variant Processes in Human Declarative Memory: Evidence Using Machine Learning Classification.
Techniques in Retrieval Tasks Transactions on Computational Collective Intelligence XXIV, 117-133.
[Link, PDF] [2]
2015
- Paolo Avesani, Hananel Hazan, Ester Koilis, Larry M. Manevitz, Diego Sona:
Non-parametric temporal modeling of the hemodynamic response function via a liquid state machine
Neural Networks. Volume 70, October 2015, Pages 61–73.
[Link, PDF] [1]
- Tali Atir-Sharon, Asaf Gilboa, Hananel Hazan, Ester Koilis, and Larry M. Manevitz:
Decoding the Formation of New Semantics: MVPA Investigation of Rapid Neocortical Plasticity during Associative Encoding through Fast Mapping
Neural Plasticity, vol. 2015, Article ID 804385, 17 pages, 2015.
[Link, PDF] [1]
- Frid A., Hazan H., Koilis E., M. Manevitz L., Merhav M. and Star G. (2015).
Machine Learning Techniques and the Existence of Variant Processes in Humans Declarative Memory.
In Proceedings of the 7th International Joint Conference on Computational Intelligence, ISBN 978-989-758-157-1, pages 114-121. DOI: 10.5220/0005594501140121
[Link, PDF] [2]
2014
- Haim Shalelashvili, Tali Bitan, Alex Frid, Hananel Hazan, Stav Hertz, Yael Weiss and Larry Manevitz:
Recognizing Deep Grammatical Information during Reading from Event Related fMRI
2014 IEEE 28h Convention of Electrical Electronics Engineers in Israel (IEEEI), 2014.
[Link, PDF] [2]
- Alex Frid, Hananel Hazan, Larry Manevitz,:
Towards Classifying Human Phonemes without Encodings via Spatiotemporal Liquid State Machines
Software Science, IEEE International Conference Software Science, Technology and Engineering (SWSTE), 2014, 63-64.
[Link, PDF] [2]
- Alex Frid, Hananel Hazan, Dan Hilu, Larry Manevitz, Lorraine O Ramig, Shimon Sapir:
Computational Diagnosis of Parkinson’s Disease Directly from Natural Speech Using Machine Learning Techniques
IEEE International Conference Software Science, Technology and Engineering (SWSTE), 2014, 50-53.
[Link, PDF] [2]
2013
2012
- Hazan, H. and Manevitz, L:
Topological constraints and robustness in liquid state machines
Expert Systems with Applications, Volume 39, Issue 2, Pages 1597-1606, February 2012.
[Link, PDF, Source – Code] [1]
- Frid, A., Hazan, H. and Manevitz, L:
Temporal Pattern Recognition via Temporal Networks of Temporal Neurons
2012 IEEE 27th Convention of Electrical Electronics Engineers in Israel (IEEEI), 2012, pp. 1 –4.
[Link, PDF] [2]
- Hananel Hazan; Dan Hilu; Larry Manevitz; Lorraine O. Ramig; and Shimon Sapir:
Early Diagnosis of Parkinson’s Disease via Machine Learning on Speech Data
2012 IEEE 27th Convention of Electrical Electronics Engineers in Israel (IEEEI), 2012, pp. 1 –4.
[Link, PDF] [2]
2011
- Gilboa, A., Hazan, H., Koilis, E., Manevitz, L. and Sharon, T:
Multiple Declarative Memory Systems: Classification with Machine Learning Techniques
Proceedings of the International Joint Conference on Neural Networks(IJCNN), 2011, San Jose, Ca. Page 54, Poster 312.
[PDF] [2]
- Avesani, P.; Hazan, H.; Koilis, E.; Manevitz, L.; Sona, D;
Learning BOLD Response in fMRI by Reservoir Computing
IEEE Workshop on Pattern Recognition in Neuroimaging (PRNI),ISBN: 978-0-7695-4399-4, pp.57-60, 16-18 May 2011.
[Link,PDF] [2]
2010
- Manevitz, L. Hazan,H:
Stability and Topology in Reservoir Computing.
Lecture Notes in Computer Science (LNAI).2010. 6438.
[Link,PDF] [1]
- Peleg, O., Manevitz, L., Hazan, H., Eviatar, Z:
Two Hemispheres – Two Networks A Computational Model Explaining Hemispheric Asymmetries While Reading Ambiguous Words.
Annals of Mathematics and Artificial Intelligence (AMAI). 2010. Volume 59, Number 1, 125-147.
[Link, PDF] [1]
- Manevitz, L. Hazan,H.
Stability and Topology in Reservoir Computing
Proceedings of the 9th Mexican International Conference on Artificial Intelligence (MICAI), Pages 245-256.
1007/978-3-642-16773-7_21
[Link] [2]
- Hazan H. and Manevitz L:
The Liquid State Machine Is Not Robust To Problems In Its Components But Topological Constraints Can Restore Robustness.
Proceedings of the International Conference on Fuzzy Computation and 2nd International Conference on Neural Computation,2010, pages 258-264.
[Link,PDF] [2]
- Eviatar Z., Hazan H., Manevitz L., Peleg, O. and Timor, R.:
Interactions Between Hemispheres When Disambiguating Ambiguous Homograph Words During Silent Reading.
Proceedings of the International Conference on Fuzzy Computation and 2nd International Conference on Neural Computation,2010, pages 271-278.
[Link, PDF] [2]
2007
- Peleg, O., Eviatar, Z., Hazan, H., and Manevitz, L.:
Differences and Interactions between Cerebral Hemispheres When Processing Ambiguous Homographs.
Attention in Cognitive Systems, L. Paletta and E. Rome, Eds. Springer-Verlag Berlin Heidelberg 2007-LNAI (Lecture Notes in Computer Science) publication no.4840, ‘Attention in Cognitive Systems’, L. Paletta and E. Rome, Eds., pp. 367–380.
[Link,PDF] [2]
- Peleg, O., Eviatar, Z., Manevitz, L., and Hazan, H.:
Using Neural Network Models to Model Cerebral Hemispheric Differences in Processing Ambiguous Words.
IJCAI07 (International Joint Conference on Artificial Intelligence)-NeSy’07 (Neural-Symbolic Learning and Reasoning). Publish electronically. CEUR Workshop Proceedings, Vol. 230, 2007. ISSN 1613-0073. 31-37.
[Link,PDF] [2]
- M.Sc. Thesis:
Resolution of Lexical Ambiguity in Neural Networks: Distinctions and Cooperation between Models of Right and Left Hemispheres.
Supervisors:
Professor Larry Manevitz in the NeuroComputation lab
Dr. Orna Peleg in Institute of Information Processing and Decision Making (IIPDM) at University of Haifa.
Hananel Hazan , חננאל חזן , Activities, Academic Publications , Open Source Programs